Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Journal of the Serbian Chemical Society ; 2023.
Article in English | Web of Science | ID: covidwho-20238180

ABSTRACT

The outbreak of the COVID 19 pandemic confirmed the importance of personal protective equipment including the respiratory face masks as barriers to pathogens. Taking into account that face masks are mainly composed of polypropylene (PP) non-woven materials this study explores the possibility of in situ biosynthesis of silver-based nanoparticles as an antimicrobial agent on PP material. A pomegranate peel extract was used as a "green" agent for synthesis and stabilization of nanoparticles. Hydrophobicity of PP fibers was overcome by modification with corona discharge at atmospheric pressure. In order to improve the binding of silver ions, corona modified PP material was impregnated with biopolymer chitosan in the presence of crosslinker 1,2,3,4-butanetetracarboxylic acid. SEM analysis revealed the presence of spherical Ag-based nanoparticles on the fiber surface with an average size of approximately 69 nm. The higher the concentration of the precursor salt, the higher the silver content after the reduction. Larger amounts of Ag-based nanoparticles provided stronger antimicrobial activity against bacteria Escherichia coli and Staphylococcus aureus, and yeast Candida albicans.

2.
Polymers (Basel) ; 15(9)2023 Apr 22.
Article in English | MEDLINE | ID: covidwho-2318165

ABSTRACT

This study presents the development of new formulations consisting of dextran (Dex) and chitosan (Ch) matrices, with fillings such as chitosan stearate (MCh), citric acid, salicylic acid, or ginger extract. These materials were characterized using Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and mechanical tests, and evaluated for antioxidant properties, including scavenging activities, metal chelation, and ferric ion reducing power, as well as anti-inflammatory properties, measuring the binding affinity between serum albumin and the bioactive substances, which can influence their bioavailability, transport, and overall anti-inflammatory effect. Compounds in ginger such as 6-gingerol reduce inflammation by inhibiting the production of inflammatory substances, such as prostaglandin, cytokines, interleukin-1ß, and pro-inflammatory transcription factor (NF-κB) and, alongside citric and salicylic acids, combat oxidative stress, stabilizes cell membranes, and promote membrane fluidity, thereby preserving membrane integrity and function. Incorporating chitosan stearate in chitosan:dextran samples created a dense, stiff film with an elastic modulus approximately seventeen times higher than for the chitosan:dextran matrix. The Dex:Ch:MCh sample exhibited low compressibility at 48.74 ± 1.64 kPa, whereas the Dex:Ch:MCh:citric acid:salicylic acid composite had a compact network, allowing for 70.61 ± 3.9% compression at 109.30 kPa. The lipid peroxidation inhibitory assay revealed that Dex:Ch:MCh:citric acid had the highest inhibition value with 83 ± 0.577% at 24 h. The study highlights that adding active substances like ginger extract and citric acid to Dex:Ch composites enhances antioxidant properties, while modified chitosan improves mechanical properties. These composites may have potential medical applications in repairing cell membranes and regulating antioxidant enzyme activities.

3.
Indonesian Journal of Chemistry TI -?-Carrageenan/Sodium Alginate: A New Synthesis Route and Rapid Adsorbent for Hydroxychloroquine Drug ; 23(1):219-231 ST -?-Carrageenan/Sodium Alginate: A New Synthesis Route and Rapid Adsorbent for Hydroxychloroquine Drug, 2023.
Article in English | Web of Science | ID: covidwho-2307165

ABSTRACT

In recent years, the huge amounts of chemicals that are used as drugs and their derivatives have been exposed to the environment due to the COVID-19 pandemic. Some of these drugs (i.e. hydroxychloroquine (HCQ)) have a serious risk on aquatic media. In this study, carrageenan/sodium alginate (kappa C/Sa) was investigated as a biopolymer, environmentally friendly, and rapidly adsorbent to eliminate HCQ from its aqueous solution. The biopolymer (kappa C/Sa) was synthesized by free radical polymerization assisted by ultrasound in the presence of acrylic acid as cross-linkage and potassium persulfate as an initiator. The natural kappa C/Sa was characterized by FTIR, XRD, BET, BJH, and SEM techniques. The produced co-polymer had a mesoporous surface with high purity and significant thermal stability. The best parameters were determined to be 0.05 g biopolymer, 200 ppm initial HCQ concentration, salts, and pH = 7. The adsorption mechanism follows a pseudo second-order kinetic model, and the adsorption isotherm follows a Freundlich model, with qe reaching 89.8 mg/g at 500 ppm HCQ. Thermodynamic studies indicated that the adsorption of hydroxychloroquine drugs was an exothermic spontaneous process.

4.
Carbohydr Polym ; 312: 120756, 2023 Jul 15.
Article in English | MEDLINE | ID: covidwho-2309426

ABSTRACT

In this study, we developed a new filtering bioaerogel based on linear polyvinyl alcohol (PVA) and the cationic derivative of chitosan (N-[(2-hydroxy-3-trimethylamine) propyl] chitosan chloride, HTCC) with a potential antiviral application. A strong intermolecular network architecture was formed thanks to the introduction of linear PVA chains, which can efficiently interpenetrate the glutaraldehyde(GA)-crosslinked HTCC chains. The morphology of the obtained structures was examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The aerogels and modified polymers' elemental composition (including the chemical environment) was determined using X-ray photoelectron spectroscopy (XPS). New aerogels with more than twice as much developed micro- and mesopore space and BET-specific surface area were obtained concerning the starting sample chitosan aerogel crosslinked by glutaraldehyde (Chit/GA). The results obtained from the XPS analysis showed the presence of cationic 3-trimethylammonium groups on the surface of the aerogel, which can interact with viral capsid proteins. No cytotoxic effect of HTCC/GA/PVA aerogel was also observed on fibroblast cells of the NIH3T3 line. Furthermore, the HTCC/GA/PVA aerogel has been shown that efficiently traps mouse hepatitis virus (MHV) from suspension. The presented concept of aerogel filters for virus capture based on modified chitosan and polyvinyl alcohol has a high application potential.


Subject(s)
Chitosan , Viruses , Animals , Mice , Chitosan/chemistry , Polyvinyl Alcohol/chemistry , Glutaral/chemistry , NIH 3T3 Cells
5.
Process Biochem ; 100: 237-244, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-2290109

ABSTRACT

Nanomaterials have wide-ranging biomedical applications in prevention, treatment and control of diseases. Nanoparticle based vaccines have proven prodigious prophylaxis of various infectious and non-infectious diseases of human and animal concern. Nano-vaccines outnumber the conventional vaccines by virtue of plasticity in physio-chemical properties and ease of administration. The efficacy of nano-based vaccines may be attributed to the improved antigen stability, minimum immuno-toxicity, sustained release, enhanced immunogenicity and the flexibility of physical features of nanoparticles. Based on these, the nano-based vaccines have potential to evoke both cellular and humoral immune responses. Targeted and highly specific immunological pathways required for solid and long lasting immunity may be achieved with specially engineered nano-vaccines. This review presents an insight into the prevention of infectious diseases (of bacterial, viral and parasitic origin) and non-infectious diseases (cancer, auto-immune diseases) using nano-vaccinology. Additionally, key challenges to the effective utilization of nano-vaccines from bench to clinical settings have been highlighted as research domains for future.

6.
Pharmaceutics ; 15(4)2023 Mar 29.
Article in English | MEDLINE | ID: covidwho-2298524

ABSTRACT

The severe course of COVID-19 leads to the long-terming pulmonary diseases, such as bacterial pneumonia and post-COVID-19 pulmonary fibrosis. Thus, the essential task of biomedicine is a design of new effective drug formulations, including those for inhalation administration. In this work, we propose an approach to the creation of lipid-polymer delivery systems for fluoroquinolones and pirfenidone based on liposomes of various compositions decorated with mucoadhesive mannosylated chitosan. A generalizing study on the physicochemical patterns of the interactions of drugs with bilayers of various compositions was carried out, and the main binding sites were identified. The role of the polymer shell in the stabilization of vesicles and the delayed release of the contents has been demonstrated. For the liquid-polymer formulation of moxifloxacin, a prolonged accumulation of the drug in lung tissues was found after a single endotracheal administration to mice, significantly exceeding the control intravenous and endotracheal administration of the drug.

7.
Antibiotics (Basel) ; 12(4)2023 Mar 28.
Article in English | MEDLINE | ID: covidwho-2295717

ABSTRACT

Chitosan derivatives and composites are the next generation polymers for biomedical applications. With their humble origins from the second most abundant naturally available polymer chitin, chitosan is currently one of the most promising polymer systems, with wide biological applications. This current review gives a bird's eye view of the antimicrobial applications of chitosan composites and derivatives. The antiviral activity and the mechanisms behind the inhibitory activity of these components have been reviewed. Specifically, the anti-COVID-19 aspects of chitosan composites and their derivatives have been compiled from the existing scattered reports and presented. Defeating COVID-19 is the battle of this century, and the chitosan derivative-based combat strategies naturally become very attractive. The challenges ahead and future recommendations have been addressed.

8.
Polym Bull (Berl) ; : 1-25, 2023 Apr 05.
Article in English | MEDLINE | ID: covidwho-2294290

ABSTRACT

Infectious diseases and their effective management are still a challenge in this modern era of medicine. Diseases, such as the SARS-CoV-2, Ebola virus, and Zika virus, still put human civilization at peril. Existing drug banks, which include antivirals, antibacterial, and small-molecule drugs, are the most advocated method for treatment, although effective but they still flounder in many instances. This calls for finding more effective alternatives for tackling the menace of infectious diseases. Nanoformulations are progressively being implemented for clinical translation and are being considered a new paradigm against infectious diseases. Natural polymers like chitosan are preferred to design nanoparticles owing to their biocompatibility, biodegradation, and long shelf-life. The chitosan nanoparticles (CNPs) being highly adaptive delivers contemporary prevention for infectious diseases. Currently, they are being used as antibacterial, drug, and vaccine delivery vehicles, and wound-dressing materials, for infectious disease treatment. Although the recruitment of CNPs in clinical trials associated with infectious diseases is minimal, this may increase shortly due to the sudden emergence of unknown pathogens like SARS-CoV-2, thus turning them into a panacea for the management of microorganisms. This review particularly focuses on the all-around application of CNPs along with their recent clinical applications in infectious disease management.

9.
Antibiotics (Basel) ; 12(4)2023 Apr 08.
Article in English | MEDLINE | ID: covidwho-2301854

ABSTRACT

The golden age of antibiotics for tuberculosis (TB) is marked by its success in the 1950s of the last century. However, TB is not under control, and the rise in antibiotic resistance worldwide is a major threat to global health care. Understanding the complex interactions between TB bacilli and their host can inform the rational design of better TB therapeutics, including vaccines, new antibiotics, and host-directed therapies. We recently demonstrated that the modulation of cystatin C in human macrophages via RNA silencing improved the anti-mycobacterial immune responses to Mycobacterium tuberculosis infection. Available in vitro transfection methods are not suitable for the clinical translation of host-cell RNA silencing. To overcome this limitation, we developed different RNA delivery systems (DSs) that target human macrophages. Human peripheral blood-derived macrophages and THP1 cells are difficult to transfect using available methods. In this work, a new potential nanomedicine based on chitosan (CS-DS) was efficiently developed to carry a siRNA-targeting cystatin C to the infected macrophage models. Consequently, an effective impact on the intracellular survival/replication of TB bacilli, including drug-resistant clinical strains, was observed. Altogether, these results suggest the potential use of CS-DS in adjunctive therapy for TB in combination or not with antibiotics.

10.
Journal of Natural Fibers ; 20(1), 2023.
Article in English | Scopus | ID: covidwho-2268303

ABSTRACT

The demand for face masks is increasing exponentially due to the coronavirus pandemic and the particulate matter (PM) in the atmosphere. As a result, an enormous number of disposable mask filters have been produced and discarded, contributing to plastic waste. Underprivileged people who cannot afford to purchase commercial face masks have started making fabric masks with waste clothing;however, this material does not effectively filter viruses or PM. Therefore, in this study, a chitosan coating was applied to clothing fabrics to increase their effectiveness as face masks. The improvement in the PM removal efficiency owing to the chitosan polymer was observed for stocking, innerwear, and bamboo materials, but not for cotton. Furthermore, chitosan prepared in the form of a nanowhisker (CsW) achieved a PM 2.5 removal efficiency of 96% in a five-layer cotton fabric. In addition, a commercial biodegradable poly(lactic acid) filter was coated with CsW, which increased the PM 2.5 removal efficiency from 67% to 83%. Additionally, microbial growth was significantly suppressed in the chitosan-coated fabrics, and the degree to which it was suppressed depended on the coating concentration. The study will aid in the utilization of face mask filters that are more sustainable, efficient, and widely accessible. © 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.

11.
Food Research ; 7(1):76-92, 2023.
Article in English | EMBASE | ID: covidwho-2282815

ABSTRACT

Iron is a mineral that plays an important role, especially to prevent anaemia through the production of red blood cells. Iron also plays a role in physiological processes, such as the activation of enzymes and hormones, as well as increasing the immune system in warding off various viral infections. Therefore, iron bioavailability needs to be considered to take the greatest benefit of iron. This review discussed the factors that can affect the bioavailability of iron, various technologies to increase the bioavailability, and its potential in enhancing the immune system. Iron bioavailability can be increased by fortification, fermentation, the addition of vitamin C, and iron encapsulation. Under conditions of adequate iron intake, iron plays an important role in enhancing the immune system through controlling lymphocytes and T cell proliferation. However, excess iron consumption can be at risk of weakening the host's immune response to viruses. Therefore, the appropriate level of iron intake must be maintained accurately to be used optimally and has the potential to ward off viral infections, including the Sars-CoV-2 virus as the cause of COVID-19.Copyright © 2023, Rynnye Lyan Resources. All rights reserved.

12.
2nd International Symposium of Indonesian Chemical Engineering 2021: Enhancing Innovations and Applications of Chemical Engineering for Accelerating Sustainable Development Goals, ISIChem 2021 ; 2667, 2023.
Article in English | Scopus | ID: covidwho-2248243

ABSTRACT

The current Covid-19 (SARS-CoV-2) pandemic is causing a tremendous impact on all people in the world. The use of masks is part of preventive measures in spreading certain respiratory viral diseases, including Covid-19. One way to prevent viruses is to use fabric masks, but there is still a shortage that nano filters are needed as a material mask layer. The purpose of this research is to examine the effect of nanosilver concentration and nano-TiO2 concentration on mechanical strength, chemical composition, mixtures, morphology, mechanical strength, and effectiveness of the resulting nano-filter filtration. The nano filters are produced by mixing part of the chitosan solution (2% by weight), nanosilver activated carbon, and the nano-TiO2 solution is added and stirred until homogeneous. Based on the mechanical strength analysis, the best nano filter was obtained at an Ag 3% TiO2 4% concentration with a tensile strength of 7,471 Mpa and an elongation of 7%. The results of the FTIR test showed that nano filters with a concentration of Ag 3% and TiO2 4% found the highest absorption of the primary amine groups N-H2 and OH-. The results of SEM confirmed that the addition of Ag caused a decrease in the porosity of the nano filter. The results of the XRD showed the consistency of the presence of Ag and TiO2 nanoparticles. In addition, nano filters with a concentration of Ag 3% and TiO2 4% have a better rejection condition than other concentrations with a percentage of 77.54%. © 2023 Author(s).

13.
Viruses ; 15(3)2023 02 28.
Article in English | MEDLINE | ID: covidwho-2289102

ABSTRACT

Current antiviral therapy research is focused on developing dosage forms that enable highly effective drug delivery, providing a selective effect in the organism, lower risk of adverse effects, a lower dose of active pharmaceutical ingredients, and minimal toxicity. In this article, antiviral drugs and the mechanisms of their action are summarized at the beginning as a prerequisite background to develop relevant drug delivery/carrier systems for them, classified and briefly discussed subsequently. Many of the recent studies aim at different types of synthetic, semisynthetic, and natural polymers serving as a favorable matrix for the antiviral drug carrier. Besides a wider view of different antiviral delivery systems, this review focuses on advances in antiviral drug delivery systems based on chitosan (CS) and derivatized CS carriers. CS and its derivatives are evaluated concerning methods of their preparation, their basic characteristics and properties, approaches to the incorporation of an antiviral drug in the CS polymer as well as CS nanoparticulate systems, and their recent biomedical applications in the context of actual antiviral therapy. The degree of development (i.e., research study, in vitro/ex vivo/in vivo preclinical testing), as well as benefits and limitations of CS polymer and CS nanoparticulate drug delivery systems, are reported for particular viral diseases and corresponding antivirotics.


Subject(s)
Chitosan , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Delivery Systems , Drug Carriers , Polymers
14.
Chem Eng J ; 464: 142588, 2023 May 15.
Article in English | MEDLINE | ID: covidwho-2267893

ABSTRACT

The worldwide spread of COVID-19 has put a higher requirement for personal medical protective clothing, developing protective clothing with sustained antibacterial and antiviral performance is the priority for safe and sustaining application. For this purpose, we develop a novel cellulose based material with sustained antibacterial and antiviral properties. In the proposed method, the chitosan oligosaccharide (COS) was subjected to a guanylation reaction with dicyandiamide in the presence of Scandium (III) triflate; because of the relatively lower molecular weight and water solubility of the COS, GCOS (guanylated chitosan oligosaccharide) with high substitution degree (DS) could be successfully synthetized without acid application. In this instance, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the GCOS were only 1/8 and 1/4 of that of COS. The introduction of GCOS onto the fiber endowed the fiber with extremely high antibacterial and antiviral performance, showing 100% bacteriostatic rate against Staphylococcus aureus and Escherichia coli and 99.48% virus load reduction of bacteriophage MS2. More importantly, the GCOS modified cellulosic fibers (GCOS-CFs) exhibit excellent sustained antibacterial and antiviral properties; namely, 30 washing cycles had negligible effect on the bacteriostatic rate (100%) and inhibition rate of bacteriophage MS2 (99.0%). Moreover, the paper prepared from the GCOS-CFs still exhibited prominent antibacterial and antiviral activity; inferring that the sheeting forming, press, and drying process have almost no effect on the antibacterial and antiviral performances. The insensitive of antibacterial and antiviral activity to water washing (spunlace) and heat (drying) make the GCOS-CFs a potential material applicable in the spunlaced non-woven fabric production.

15.
Expert Opin Drug Deliv ; 20(3): 413-434, 2023 03.
Article in English | MEDLINE | ID: covidwho-2267414

ABSTRACT

INTRODUCTION: Mucoadhesive drug delivery systems (MDDS) are specifically designed to interact and bind to the mucosal layer of the epithelium for localized, prolonged, and/or targeted drug delivery. Over the past 4 decades, several dosage forms have been developed for localized as well as systemic drug delivery at different anatomical sites. AREAS COVERED: The objective of this review is to provide a detailed understanding of the different aspects of MDDS. Part II describes the origin and evolution of MDDS, followed by a discussion of the properties of mucoadhesive polymers. Finally, a synopsis of the different commercial aspects of MDDS, recent advances in the development of MDDS for biologics and COVID-19 as well as future perspectives are provided. EXPERT OPINION: A review of the past reports and recent advances reveal MDDS as highly versatile, biocompatible, and noninvasive drug delivery systems. The rise in the number of approved biologics, the introduction of newer highly efficient thiomers, as well as the recent advances in the field of nanotechnology have led to several excellent applications of MDDS, which are predicted to grow significantly in the future.


Subject(s)
COVID-19 , Humans , Biological Availability , Drug Delivery Systems , Mucous Membrane/metabolism , Nanotechnology
16.
Animals (Basel) ; 13(5)2023 Feb 28.
Article in English | MEDLINE | ID: covidwho-2277238

ABSTRACT

The porcine epidemic diarrhea virus, PEDV, which causes diarrhea, vomiting and death in piglets, causes huge economic losses. Therefore, understanding how to induce mucosal immune responses in piglets is essential in the mechanism and application against PEDV infection with mucosal immunity. A method of treatment in our research was used to make an oral vaccine that packaged the inactive PEDV with microencapsulation, which consisted of sodium alginate and chitosan, and adapted the condition of the gut in mice. The in vitro release experiment of microcapsules showed that inactive PEDV was not only easily released in saline and acid solutions but also had an excellent storage tolerance, and was suitable for use as an oral vaccine. Interestingly, both experimental groups with different doses of inactive virus enhanced the secretion of specific antibodies in the serum and intestinal mucus, which caused the effective neutralization against PEDV in the Vero cell by both IgG and IgA, respectively. Moreover, the microencapsulation could stimulate the differentiation of CD11b+ and CD11c+ dendritic cells, which means that the microencapsulation was also identified as an oral adjuvant to help phagocytosis of dendritic cells in mice. Flow cytometry revealed that the B220+ and CD23+ of the B cells could significantly increase antibody production with the stimulation from the antigens' PEDV groups, and the microencapsulation could also increase the cell viability of B cells, stimulating the secretion of antibodies such as IgG and IgA in mice. In addition, the microencapsulation promoted the expression of anti-inflammatory cytokines, such as IL-10 and TGF-ß. Moreover, proinflammatory cytokines, such as IL-1, TNF-α, and IL-17, were inhibited by alginate and chitosan in the microencapsulation groups compared with the inactivated PEDV group. Taken together, our results demonstrate that the microparticle could play the role of mucosal adjuvant, and release inactivated PEDV in the gut, which can effectively stimulate mucosal and systemic immune responses in mice.

17.
Int J Biol Macromol ; 236: 123951, 2023 May 01.
Article in English | MEDLINE | ID: covidwho-2276638

ABSTRACT

Masks proved to be necessary protective measure during the COVID-19 pandemic, but they provided a physical barrier rather than inactivating viruses, increasing the risk of cross-infection. In this study, high-molecular weight chitosan and cationised cellulose nanofibrils were screen-printed individually or as a mixture onto the inner surface of the first polypropylene (PP) layer. First, biopolymers were evaluated by various physicochemical methods for their suitability for screen-printing and antiviral activity. Second, the effect of the coatings was evaluated by analysing the morphology, surface chemistry, charge of the modified PP layer, air permeability, water-vapour retention, add-on, contact angle, antiviral activity against the model virus phi6 and cytotoxicity. Finally, the functional PP layers were integrated into face masks, and resulting masks were tested for wettability, air permeability, and viral filtration efficiency (VFE). Air permeability was reduced for modified PP layers (43 % reduction for kat-CNF) and face masks (52 % reduction of kat-CNF layer). The antiviral potential of the modified PP layers against phi6 showed inhibition of 0.08 to 0.97 log (pH 7.5) and cytotoxicity assay showed cell viability above 70 %. VFE of the masks remained the same (~99.9 %), even after applying the biopolymers, confirming that these masks provided high level of protection against viruses.


Subject(s)
COVID-19 , Chitosan , Humans , COVID-19/prevention & control , Antiviral Agents/pharmacology , Pandemics/prevention & control , Cellulose/pharmacology , Masks
18.
Pharmaceutics ; 15(3)2023 Feb 26.
Article in English | MEDLINE | ID: covidwho-2280543

ABSTRACT

Numerous drugs have emerged to treat various diseases, such as COVID-19, cancer, and protect human health. Approximately 40% of them are lipophilic and are used for treating diseases through various delivery routes, including skin absorption, oral administration, and injection. However, as lipophilic drugs have a low solubility in the human body, drug delivery systems (DDSs) are being actively developed to increase drug bioavailability. Liposomes, micro-sponges, and polymer-based nanoparticles have been proposed as DDS carriers for lipophilic drugs. However, their instability, cytotoxicity, and lack of targeting ability limit their commercialization. Lipid nanoparticles (LNPs) have fewer side effects, excellent biocompatibility, and high physical stability. LNPs are considered efficient vehicles of lipophilic drugs owing to their lipid-based internal structure. In addition, recent LNP studies suggest that the bioavailability of LNP can be increased through surface modifications, such as PEGylation, chitosan, and surfactant protein coating. Thus, their combinations have an abundant utilization potential in the fields of DDSs for carrying lipophilic drugs. In this review, the functions and efficiencies of various types of LNPs and surface modifications developed to optimize lipophilic drug delivery are discussed.

19.
Cellulose (Lond) ; 30(6): 3505-3522, 2023.
Article in English | MEDLINE | ID: covidwho-2249002

ABSTRACT

In this work, new chitosan derivative nanofibers that exhibit antibacterial properties were successfully fabricated. The two CS Schiff base derivatives (CS-APC and CS-2APC) were prepared by incorporating 4-amino antipyrine moiety in two different ratios, followed by a reductive amination to obtain the corresponding derivatives CS-APCR and CS-2APCR. Spectral analyses were used to confirm the chemical structure. The molecular docking evaluation of CS-APC, CS-APCR, and CS was conducted on DNA topoisomerase IV, thymidylate kinase and SARS-CoV-2 main protease (3CLpro) active sites. CS-APCR showed a well-fitting into the three enzyme active sites with docking score values of - 32.76, - 35.43 and - 30.12 kcal/mol, respectively. The nanocomposites of CS derivatives were obtained by electrospinning the blends of CS-2APC and CS-2APCR with polyvinyl pyrrolidone (PVP) at 20 kV. The morphology of the nanofibers was investigated by scanning electron microscopy (SEM). It was found that fiber diameters were significantly decreased when CS-2APC and CS-2APCR were incorporated into pure PVP to reach 206-296 nm and 146-170 nm, respectively, compared to 224-332 nm for pure PVP. The derivatives of CS and their nanofibers with PVP were found to have antibacterial activities against two strains of Staphylococcus aureus and Escherichia coli. Data revealed that CS-2APC nanofibers showed antibacterial activity to the two strains of E. coli less than CS-2APCR nanofibers.

20.
OpenNano ; 9, 2023.
Article in English | Scopus | ID: covidwho-2239672

ABSTRACT

The global anxiety and economic crisis causes the deadly pandemic coronavirus disease of 2019 (COVID 19) affect millions of people right now. Subsequently, this life threatened viral disease is caused due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, morbidity and mortality of infected patients are due to cytokines storm syndrome associated with lung injury and multiorgan failure caused by COVID 19. Thereafter, several methodological advances have been approved by WHO and US-FDA for the detection, diagnosis and control of this wide spreadable communicable disease but still facing multi-challenges to control. Herein, we majorly emphasize the current trends and future perspectives of nano-medicinal based approaches for the delivery of anti-COVID 19 therapeutic moieties. Interestingly, Nanoparticles (NPs) loaded with drug molecules or vaccines resemble morphological features of SARS-CoV-2 in their size (60–140 nm) and shape (circular or spherical) that particularly mimics the virus facilitating strong interaction between them. Indeed, the delivery of anti-COVID 19 cargos via a nanoparticle such as Lipidic nanoparticles, Polymeric nanoparticles, Metallic nanoparticles, and Multi-functionalized nanoparticles to overcome the drawbacks of conventional approaches, specifying the site-specific targeting with reduced drug loading and toxicities, exhibit their immense potential. Additionally, nano-technological based drug delivery with their peculiar characteristics of having low immunogenicity, tunable drug release, multidrug delivery, higher selectivity and specificity, higher efficacy and tolerability switch on the novel pathway for the prevention and treatment of COVID 19. © 2022 The Author(s)

SELECTION OF CITATIONS
SEARCH DETAIL